MATH 2050A: Mathematical Analysis I Mid-Term Test

Answer ALL Questions 31 Oct, 2017. 8:30-10:00

- 1. (i) Use ε - δ notation to show that $\lim_{x\to 1}$ 1 $\frac{1}{x^2+1} =$ 1 2 .
	- (ii) Use ε - δ notation to show that $\lim_{x\to\infty}$ $\sin x^2$ $\frac{\sin x}{1 + x^2} = 0.$
	- (iii) Does the limit $\lim_{x\to\infty}$ $x^2 \sin x^2$ $\frac{\sinh x}{1+x^2}$ exist? Explain.
- 2. (i) State the Bolazno-Weierstrass Theorem and the Nested Intervals Theorem. (ii) Use the Bolazno-Weierstrass Theorem to show the Nested Interval Theorem.
- 3. Let $0 < a, b < 1$. Let $f : [0,1] \rightarrow [0,1]$ be a bijection. Suppose that $a|x-y| \leq$ $|f(x) - f(y)| \le b|x - y|$ for all $x, y \in [0, 1].$
	- (i) Using ε -δ notation, show that f and the inverse f^{-1} both are continuous on [0, 1].
	- (ii) Fix $x_1 \in [0,1]$. Put $x_{n+1} = f(x_n)$, for $n = 1, 2...$ Show that (x_n) is a Cauchy sequence.
	- (iii) Show that there is a point $z \in [0,1]$ such that $f(z) = z$.

End

MATH2050A Midterm Solution

1. (i)
$$
\left| \frac{1}{x^2 + 1} - \frac{1}{2} \right| = \left| \frac{1 - x^2}{2(x^2 + 1)} \right| \le \left| \frac{(1 - x)(1 + x)}{2} \right|
$$
 for every $x \in \mathbb{R}$.
\nIf $0 < x < 2$, then $1 < 1 + x < 3$ and $\left| \frac{1}{x^2 + 1} - \frac{1}{2} \right| \le \frac{3}{2} |1 - x|$
\nLet $\epsilon > 0$. We put $\delta := \min(\frac{2}{3}\epsilon, 1)$. If $0 < |x - 1| < \delta$, then

$$
\left|\frac{1}{x^2+1} - \frac{1}{2}\right| < \frac{3}{2} \left(\frac{2\epsilon}{3}\right) = \epsilon
$$

(ii) $\begin{array}{c} \hline \end{array}$ $\sin x^2$ $\frac{\sin x}{1 + x^2} - 0$ $\begin{array}{c} \hline \end{array}$ $\leq \frac{1}{1}$ $\frac{1}{1+x^2} \leq \frac{1}{x^2}$ $\frac{1}{x^2} \leq \frac{1}{x}$ \boldsymbol{x} whenever $x \geq 1$. Let $\epsilon > 0$. We put $M := \max(1, \frac{1}{\epsilon})$ $(\frac{1}{\epsilon})$. If $x > M$, then

$$
\left|\frac{\sin x^2}{1+x^2} - 0\right| \le \frac{1}{x} < \frac{1}{M} \le \epsilon
$$

(iii) No. Let $f(x) := \frac{x^2 \sin x^2}{1 + x^2}$ $\frac{x^2 \sin x^2}{1+x^2}$. Let $x_n := \sqrt{2n\pi}$ and $y_n := \sqrt{(2n+\frac{1}{2})^2}$ $(\frac{1}{2})\pi$ for each $n \in \mathbb{N}$. Note $x_n, y_n \to \infty$ as $n \to \infty$, but $f(x_n) = 0$ for all n,

$$
f(y_n) = \frac{(2n + \frac{1}{2})\pi}{1 + (2n + \frac{1}{2})\pi} \to 1 \text{ as } n \to \infty
$$

Therefore, $\lim_{x\to\infty} f(x)$ does not exist.

This follows from observing $f(x) = \left(\frac{x^2}{1+x^2}\right)^{x}$ $1 + x^2$ \setminus $\sin x^2$, $\lim_{x\to\infty}$ x^2 $\frac{x}{1+x^2} \neq 0$ exists and $\lim_{x \to \infty} \sin x^2$ does not exist. One may also use $f(x) + \frac{\sin x^2}{1+x^2}$ $\frac{\sin x}{1 + x^2} = \sin x^2$ combining with 1(ii).

2. (i) The Bolzano-Weierstrass Theorem: A bounded sequence of real numbers has a convergent subsequence.

Nested Intervals Theorem: If $\{I_n\}$ is a sequence of non-empty closed and bounded intervals such that $I_{n+1} \subset I_n$ for each $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Remark. No mark shall be given to the uniqueness part: Suppose further $(b_n - a_n) \rightarrow$ 0 as $n \to \infty$, then $\bigcap_{n=1}^{\infty} I_n = \{\xi\}$ for some $\xi \in \mathbb{R}$, where $I_n = [a_n, b_n]$.

(ii) Write $I_n = [a_n, b_n]$.

Since each interval I_n is non-empty, pick $x_n \in I_n$. Note $a_1 \le x_n \le b_1$ and $\{x_n\}$ is a bounded sequence. By the Bolzano-Weierstrass Theorem, there exists a convergent subsequence $\{x_{n_k}\}$. Let $\xi \in \mathbb{R}$ be the limit of $\{x_{n_k}\}$. We claim that $\xi \in I_n$ for each $n \in \mathbb{N}$.

Fix $N \in \mathbb{N}$. For $k \geq N$, $x_{n_k} \in I_{n_k} \subset I_k \subset I_N$ because $n_k \geq k \geq N$. Therefore, $a_N \leq x_{n_k} \leq b_N$ for every $k \geq N$. By taking limit $k \to \infty$, $a_N \leq \xi \leq b_N$. That is, $\xi \in I_N$ and this holds for every $N \in \mathbb{N}$.

3. (i) f is continuous on [0, 1]: Fix any $x_0 \in [0, 1]$. Let $\epsilon > 0$. We put $\delta := \frac{\epsilon}{\epsilon}$ b . If $x \in [0, 1]$ with $|x - x_0| < \delta$, then $|f(x) - f(x_0)| \le b |x - x_0| < b \left(\frac{\epsilon}{b}\right)$ $= \epsilon$.

 f^{-1} is continuous on [0, 1]: Fix any $x_0 \in [0,1]$. Let $\epsilon > 0$. We put $\delta := a\epsilon$. If $x \in [0, 1]$ with $|x - x_0| < \delta$, then

$$
a |f^{-1}(x) - f^{-1}(x_0)| \le |f(f^{-1}(x)) - f(f^{-1}(x_0))| = |x - x_0| < \delta = a\epsilon
$$

hence $|f^{-1}(x) - f^{-1}(x_0)| < \epsilon$.

(ii) Observe that (x_n) is a contractive sequence satisfying

$$
|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| \le b |x_n - x_{n-1}| \quad \text{for every } n \ge 2
$$

Hence, it is Cauchy: For any $n, p \in \mathbb{N}$, first by triangle inequality

$$
|x_{n+p} - x_n| \le |x_{n+p} - x_{n+p-1}| + |x_{n+p-1} - x_{n+p-2}| + \dots + |x_{n+1} - x_n|
$$

\n
$$
\le b^{p-1} |x_{n+1} - x_n| + b^{p-2} |x_{n+1} - x_n| + \dots + |x_{n+1} - x_n|
$$

\n
$$
= (b^{p-1} + b^{p-2} + \dots + 1) |x_{n+1} - x_n|
$$

\n
$$
\le \frac{1}{1-b} |x_{n+1} - x_n|
$$

\n
$$
\le \frac{b^{n-1}}{1-b} |x_2 - x_1|
$$

RHS is independent of p and tends to 0 as $n \to \infty$. Therefore, (x_n) is Cauchy.

(iii) Since (x_n) is Cauchy, $\lim_{n\to\infty}x_n$ exists. Let $z := \lim_{n\to\infty}x_n$ and check that it is the desired point. Since $0 \leq x_n \leq 1$ for each n, so is its limit z. By sequential criteria and continuity of $f, f(z) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = z$.