MATH 2050A: Mathematical Analysis I

Mid-Term Test

Answer ALL Questions

31 Oct, 2017. 8:30-10:00

- 1. (i) Use ε - δ notation to show that $\lim_{x \to 1} \frac{1}{x^2 + 1} = \frac{1}{2}$.
 - (ii) Use ε - δ notation to show that $\lim_{x\to\infty} \frac{\sin x^2}{1+x^2} = 0.$
 - (iii) Does the limit $\lim_{x\to\infty} \frac{x^2 \sin x^2}{1+x^2}$ exist? Explain.
- 2. (i) State the Bolazno-Weierstrass Theorem and the Nested Intervals Theorem.(ii) Use the Bolazno-Weierstrass Theorem to show the Nested Interval Theorem.
- 3. Let 0 < a, b < 1. Let $f : [0,1] \rightarrow [0,1]$ be a bijection. Suppose that $a|x y| \le |f(x) f(y)| \le b|x y|$ for all $x, y \in [0,1]$.
 - (i) Using ε - δ notation, show that f and the inverse f^{-1} both are continuous on [0, 1].
 - (ii) Fix $x_1 \in [0,1]$. Put $x_{n+1} = f(x_n)$, for n = 1, 2... Show that (x_n) is a Cauchy sequence.
 - (iii) Show that there is a point $z \in [0, 1]$ such that f(z) = z.

End

MATH2050A Midterm Solution

1. (i)
$$\left|\frac{1}{x^2+1} - \frac{1}{2}\right| = \left|\frac{1-x^2}{2(x^2+1)}\right| \le \left|\frac{(1-x)(1+x)}{2}\right|$$
 for every $x \in \mathbb{R}$
If $0 < x < 2$, then $1 < 1+x < 3$ and $\left|\frac{1}{x^2+1} - \frac{1}{2}\right| \le \frac{3}{2}|1-x|$
Let $\epsilon > 0$. We put $\delta := \min(\frac{2}{3}\epsilon, 1)$. If $0 < |x-1| < \delta$, then

$$\left|\frac{1}{x^2+1} - \frac{1}{2}\right| < \frac{3}{2}\left(\frac{2\epsilon}{3}\right) = \epsilon$$

(ii) $\left|\frac{\sin x^2}{1+x^2} - 0\right| \le \frac{1}{1+x^2} \le \frac{1}{x^2} \le \frac{1}{x}$ whenever $x \ge 1$. Let $\epsilon > 0$. We put $M := \max(1, \frac{1}{\epsilon})$. If x > M, then

$$\left|\frac{\sin x^2}{1+x^2} - 0\right| \le \frac{1}{x} < \frac{1}{M} \le \epsilon$$

(iii) No. Let $f(x) := \frac{x^2 \sin x^2}{1 + x^2}$. Let $x_n := \sqrt{2n\pi}$ and $y_n := \sqrt{(2n + \frac{1}{2})\pi}$ for each $n \in \mathbb{N}$. Note $x_n, y_n \to \infty$ as $n \to \infty$, but $f(x_n) = 0$ for all n,

$$f(y_n) = \frac{(2n + \frac{1}{2})\pi}{1 + (2n + \frac{1}{2})\pi} \to 1 \text{ as } n \to \infty$$

Therefore, $\lim_{x \to \infty} f(x)$ does not exist.

This follows from observing $f(x) = \left(\frac{x^2}{1+x^2}\right) \sin x^2$, $\lim_{x \to \infty} \frac{x^2}{1+x^2} \neq 0$ exists and $\lim_{x \to \infty} \sin x^2$ does not exist. One may also use $f(x) + \frac{\sin x^2}{1+x^2} = \sin x^2$ combining with 1(ii).

2. (i) The Bolzano-Weierstrass Theorem: A bounded sequence of real numbers has a convergent subsequence.

Nested Intervals Theorem: If $\{I_n\}$ is a sequence of non-empty closed and bounded intervals such that $I_{n+1} \subset I_n$ for each $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Remark. No mark shall be given to the uniqueness part: Suppose further $(b_n - a_n) \rightarrow 0$ as $n \rightarrow \infty$, then $\bigcap_{n=1}^{\infty} I_n = \{\xi\}$ for some $\xi \in \mathbb{R}$, where $I_n = [a_n, b_n]$.

(ii) Write $I_n = [a_n, b_n]$.

Since each interval I_n is non-empty, pick $x_n \in I_n$. Note $a_1 \leq x_n \leq b_1$ and $\{x_n\}$ is a bounded sequence. By the Bolzano-Weierstrass Theorem, there exists a convergent subsequence $\{x_{n_k}\}$. Let $\xi \in \mathbb{R}$ be the limit of $\{x_{n_k}\}$. We claim that $\xi \in I_n$ for each $n \in \mathbb{N}$.

Fix $N \in \mathbb{N}$. For $k \geq N$, $x_{n_k} \in I_{n_k} \subset I_k \subset I_N$ because $n_k \geq k \geq N$. Therefore, $a_N \leq x_{n_k} \leq b_N$ for every $k \geq N$. By taking limit $k \to \infty$, $a_N \leq \xi \leq b_N$. That is, $\xi \in I_N$ and this holds for every $N \in \mathbb{N}$. 3. (i) f is continuous on [0, 1]: Fix any $x_0 \in [0, 1]$. Let $\epsilon > 0$. We put $\delta := \frac{\epsilon}{b}$. If $x \in [0, 1]$ with $|x - x_0| < \delta$, then $|f(x) - f(x_0)| \le b |x - x_0| < b \left(\frac{\epsilon}{b}\right) = \epsilon$.

 f^{-1} is continuous on [0,1]: Fix any $x_0 \in [0,1]$. Let $\epsilon > 0$. We put $\delta := a\epsilon$. If $x \in [0,1]$ with $|x - x_0| < \delta$, then

$$a\left|f^{-1}(x) - f^{-1}(x_0)\right| \le \left|f(f^{-1}(x)) - f(f^{-1}(x_0))\right| = |x - x_0| < \delta = a\epsilon$$

hence $|f^{-1}(x) - f^{-1}(x_0)| < \epsilon$.

(ii) Observe that (x_n) is a contractive sequence satisfying

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| \le b |x_n - x_{n-1}|$$
 for every $n \ge 2$

Hence, it is Cauchy: For any $n, p \in \mathbb{N}$, first by triangle inequality

$$\begin{aligned} |x_{n+p} - x_n| &\leq |x_{n+p} - x_{n+p-1}| + |x_{n+p-1} - x_{n+p-2}| + \dots + |x_{n+1} - x_n| \\ &\leq b^{p-1} |x_{n+1} - x_n| + b^{p-2} |x_{n+1} - x_n| + \dots + |x_{n+1} - x_n| \\ &= \left(b^{p-1} + b^{p-2} + \dots + 1\right) |x_{n+1} - x_n| \\ &\leq \frac{1}{1-b} |x_{n+1} - x_n| \\ &\leq \frac{b^{n-1}}{1-b} |x_2 - x_1| \end{aligned}$$

RHS is independent of p and tends to 0 as $n \to \infty$. Therefore, (x_n) is Cauchy.

(iii) Since (x_n) is Cauchy, $\lim_{n \to \infty} x_n$ exists. Let $z := \lim_{n \to \infty} x_n$ and check that it is the desired point. Since $0 \le x_n \le 1$ for each n, so is its limit z. By sequential criteria and continuity of f, $f(z) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = z$.